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1 Introduction

The shale oil industry, which emerged in 2009, has rapidly become a dominant force in

global oil production, now accounting for over half of the market. However, the hydraulic

fracturing (fracking) methods used in shale oil extraction have been linked to environmental

concerns, including the contamination of underground water with increased salt concen-

trations and non-biodegradable compounds, as well as the release of greenhouse gases. In

light of rising environmental, social, and governance (ESG) concerns, along with height-

ened climate change awareness among policymakers and investors, there has been mounting

pressure for industries—including shale oil—to adopt greener production practices. One

such practice is the use of more environmentally friendly proppants in hydraulic fracturing

processes. During periods of external green shocks or internal financial distress, firms may

innovate in their exploitation methods or adopt alternative chemicals to mitigate their en-

vironmental impact. The increasing transparency provided by FracFocus, which discloses

information about shale oil wells in 12 U.S. states, has enabled us to track the adoption of

greener production practices by shale oil firms before and after the Paris Agreement.

This paper asks: Do firms that adopt greener production practices—measured by re-

duced toxic-chemical intensity—reap financial or operational benefits? Surprisingly, our

results confirm that “greener” wells do not generate higher per-unit output: oil and gas

production over both six- and twelve-month horizons is statistically indistinguishable across

wells with high versus low toxic-chemical indices . If no production gains accrue, can envi-

ronmental stewardship still pay off via improved access to credit or better financing terms?

To explore this, we examine two margins:

Syndicated-loan market reactions. We show that, despite heightened environmental

scrutiny following the Paris Agreement, the average terms of new syndicated loans to shale

oil firms—loan spreads, total commitment sizes, and overall credit availability—remained

stable, with only modest shortening of maturities and no economically meaningful tight-

ening of pricing .

Debt-dependence and pollution behavior. We construct a firm-level indicator of persis-

tent short-term-debt reliance—capturing those firms with above-median ratios of short-term

debt to assets across multiple pre-Paris years. Contrary to the notion that heavily indebted
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firms would “double down” on pollution when credit is tight, these firms in fact reduced

their toxic-chemical usage more sharply than their less-levered peers post-Paris, cutting

their chemical intensity by roughly 60. This suggests that financial constraints can spur,

rather than deter, environmental improvements when future regulatory risks rise.

In further channel tests, we document that firms with greater capital-expenditure in-

tensity or higher pre-Paris debt-service burdens show the largest post-Paris declines in

chemical intensity; whereas firms with healthier balance sheets (higher Altman Z-scores or

stronger interest coverage) and firms facing more concentrated supply chains also respond

more vigorously to the same policy shock.

This paper contributes to the growing literature on how financial institutions and in-

vestors pursue non-financial objectives, with a particular focus on environmental goals.

While this body of work spans various financial strategies aimed at achieving pro-social or

political objectives, it also provides a critical lens through which to examine the role of

financial markets in encouraging environmental responsibility.

A core area of this literature concerns capital allocation strategies employed by finan-

cial institutions to promote environmental sustainability. Several studies highlight the use

of divestment and ESG investment strategies. For instance,(Green & Roth, 2025) discuss

how capital allocation policies such as impact investing may support socially valuable firms.

However, these approaches often face challenges in achieving meaningful impact, particu-

larly if capital is easily substitutable. This is in line with (Broccardo, Hart, & Zingales,

2022), who argue that divestment strategies are often ineffective because capital flows can be

easily diverted to other sources. Moreover, (Edmans, Levit, & Schneemeier, 2022) suggest

that industry-specific tilting strategies could be more impactful than blanket divestment.

Financial institutions also employ activist strategies to promote pro-environmental prac-

tices, including shareholder voting or policy interventions. However, such measures may

only be effective when firms’ activities are sensitive to changes in capital cost or availability.

(Pastor, Stambaugh, & Taylor, 2023) explore the role of ESG strategies in shaping firms’

decision-making, while (Hartzmark & Shue, 2023) contend that policies targeting capital

supply are most effective when firms’ operations are responsive to changes in funding costs.

In this context, our study of the syndicated loan market and new corporate debt market
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after the Paris Agreement adds to the literature by highlighting the financing impact of

green financial policies on shale oil firms.

This paper contributes to four strands of literature.

First, we extend the literature on the environmental impacts of hydraulic fracturing

(HF) in shale oil production. Prior studies such as (Jackson et al., 2014), (Currie, Green-

stone, & Meckel, 2017), and (Bonetti, Leuz, & Michelon, 2021) emphasize significant envi-

ronmental risks associated with HF, particularly groundwater contamination due to non-

biodegradable chemicals ((?, ?; Agarwal et al., 2020)). Additionally, (Christensen, Hail, &

Leuz, 2021) document that disclosure mandates help mitigate pollution through increased

public scrutiny. Our study complements this literature by developing a novel, granular

toxic chemical usage index at the well-level using FracFocus data, enabling precise tracking

and evaluation of environmental behavior in shale oil production.

Second, our paper contributes to research exploring the operational implications of

adopting environmentally friendly production methods. Contrary to the prevailing as-

sumption that greener practices naturally enhance operational performance, we find no

significant production advantage for wells employing fewer toxic chemicals. This result

challenges conventional wisdom by indicating that operational incentives alone may be

insufficient to promote environmentally friendly practices.

Third, this study adds to the growing literature examining how external policy in-

terventions influence firms’ environmental decisions. Previous research highlights that

mandatory ESG disclosures and climate regulations significantly shape corporate behavior

((Christensen et al., 2021; Kellogg, 2014)). We build on this evidence by analyzing how

shale oil firms responded to the Paris Agreement, a major global climate policy. Specifically,

we find that firms with high short-term debt reliance experienced greater refinancing diffi-

culties after the policy shock, characterized by decreased bond issuance and reduced inflows

of bank funding. Importantly, these financially constrained firms subsequently showed a

pronounced reduction in toxic chemical usage, highlighting how external regulatory pres-

sures can interact with internal financial frictions to produce meaningful environmental

improvements.

Fourth, our analysis enriches the literature on the interplay between financial con-
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straints and corporate environmental and social responsibility (CSR). Prior research pro-

vides mixed evidence regarding the relationship between financial constraints and CSR

initiatives ((Cheng, Ioannou, & Serafeim, 2013; Attig, Cleary, El Ghoul, & Guedhami,

2013; Habib, Costa, Huang, Bhuiyan, & Sun, 2018; Chan, Chou, & Lo, 2017; Camp-

bell, 2007)). We directly address this debate by showing that firms experiencing financial

distress—especially those heavily dependent on short-term debt financing—respond more

vigorously to environmental regulations by reducing pollution. Through detailed channel

analyses, we further reveal that pollution reduction is more pronounced among financially

healthier firms, those with higher capital expenditure burdens, those with concentrated

supply chains, and firms experiencing ownership reductions by banks and investment man-

agers. These findings underscore the importance of internal financial health, cost structure,

supply-chain dynamics, and investor governance in shaping corporate responses to regula-

tory changes.

Collectively, by integrating detailed environmental data with firm-level financial and

ownership characteristics, this study advances our understanding of the financial and in-

stitutional conditions under which external policies effectively incentivize corporate envi-

ronmental responsibility.

The paper proceeds as follows. In Section 2, we provide background information for

our study, including hydraulic fracturing and environment concerns. Section 3 describes

the unique dataset. Section 4 we analysis of well level toxic properties. Section 5 introduce

debt and loan market reaction on Paris Agreement. Section 6 explore potential channels.

Section 7 offers Robustness test. Section 8 is the conclusion mark.

2 Background

In this section we will introduce the general research background regarding Hydraulic frac-

turing process and its environmental concerns.

Hydraulic fracturing and environmental concerns

The success of Shale Oil industry largely beneficial from technology advances, techniques

like horizontal drilling, and hydraulic fracturing (HF). Operators adapts multiple chemicals

for different purpose during fracturing. The fracturing process involves the injection of
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high-pressure ”fracking fluid”, normally consisting of water, sand and other proppants,

into a well borehole in order to induce fractures in deep-rock formations. Consequently,

this facilitates the more optimal movement of natural gas, petroleum, and brine. The

fracturing process entails injecting high-pressure ”fracking fluid,” primarily composed of

water and containing sand and other proppants, into a well hole to create cracks in deep-

rock formations. This allows for the more efficient flow of natural gas, petroleum, and brine.

Upon removal of hydraulic pressure, small grains of hydraulic fracturing proppants, such

as sand or aluminum, maintain the fractures’ openness (Von Estorff & Gandossi, 2015).

Further more, chemical usage in HF works have effects on productivity of well, making the

designing of fracturing fluid for optimal performance based on the shale layer properties of

vital importance.

While hydraulic fracturing offers economic benefits through increased hydrocarbon ac-

cessibility, opponents argue that it poses environmental risks, including water contami-

nation, noise and air pollution, and potential seismic activity, along with public health

concerns. Typically concerns include the chemicals present in HF fluids and the substan-

tial volumes of wastewater generated by the process (Currie et al., 2017).

The potential HF fluid hazardous on health and environment has prompted regulatory

measures. From government disclosure, in the United Kingdom, environmental regulators

permit only nonhazardous chemicals to be used, prioritizing the protection of underground

water sources. Similar introduction of disclosure standards for HF wells and fracturing

fluids also appears in several U.S. states. Since 2010, various state-level legislation require-

ments have been introduced, mandating HF operators to disclose the chemical composition

of their fluids. Disclosure mandates lead to reduced pollution per unit of production, de-

creased use of toxic chemicals, and fewer spills and leaks of HF fluids and wastewater.

(Christensen et al., 2021)

3 Data and Variables

This section contains comprehensive information on each data source. The comprehensive

well-level data on production chemical usage and job starting date enable us to evaluate

toxic chemical usage. By analyzing granular data on well-level productivity, location,
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and land use properties integrating chemical toxicity data, we can determine the harmful

properties of production fluids at the drilling level. In addition, we collect and analyze

data on the hazardous properties of operators. By matching project-level data with firm

measurements, we are able to establish a connection between the financial performance of

enterprises and their production decisions.

3.1 Well-level data.

FracFocus, founded in 2011, has been dedicated to documenting the chemicals used in

hydraulic fracturing activities around the country. More than 1,600 companies have re-

ported chemicals used in more than 189,000 hydraulic fracturing operations. The detailed

reporting regarding, initiated hydraulic fracturing date, well vertical distance, latitude and

longitude geolocation, operators, federal land use, chemical purpose, chemical usage per-

centage in fracturing volumes, etc. We keep the sample period afterwards. We drop the

disclosure which is (i) with no meaningful completion date (starting date is later than the

ending date), (ii) error chemical usage information (e.g. with negative or 0 chemicals usage

information, or the sum of the chemicals proportion usage is larger than 110 or lesser than

80). (iii) For each year, we keep states with new exploitation wells larger than 5 for the

estimation robustness. (iv) For the consistency in production characteristics, We focus

on oil wells with production type labeled with ’OIL’ and ’OIL & GAS’. From the general

exploitation properties side, both private firm and public firm, voluntary disclosure and

local legal forced disclosure are taken into consideration; 61,259 disclosures are defined.

3.2 Chemicals data.

To evaluate the toxic information of the chemicals used during hydraulic fracturing. We first

listed all the unique chemicals identified with the Chemical Abstract Service identification

number (CAS number) disclosed by FracFocus. CAS number, proposed by CAS registry,

has identifies to each substance that appears in the literature. The purpose is to avoid the

hassle of having multiple names for a chemical and to make it easier to search the chemical

information. A CAS number can be divided into three parts, with the first part up to

seven digits and second part two digits, third part a single digit as a check digit, each part
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is connected by hyphens (format like: xxxxxxx-xx-x). We firstly drop Fracfocus disclosed

CAS number do not matched the format, and then check whether the formed CAS number

exists or validates, 1191 chemicals are defined authentic.

In spite of new chemicals, business secrete products, or no mandatory disclosure re-

quirement by the local governments, using CAS numbers we can find chemicals’ Materials

Safety Data Sheet (MSDS) which is a comprehensive document that offers specific infor-

mation on workplace safety and health related to the use of various chemicals and chemical

products.. We use the MSDS information disclosure by ChemicalBook website.

The Globally Harmonised System of Classification and Labelling of Chemicals (GHS)

show in the MSDS is a globally acknowledged benchmark overseen by the United Nations.

Its purpose was to consolidate and substitute the several hazardous substance categorisation

and labelling methods hitherto employed globally. The standardised labels including:

(i) Symbols or GHS hazard pictograms, including information of environment concerns

and human health hazard information which assigned to multiple GHS hazard codes. The

detailed 9 categories are shown in Table 3 B.

(ii) Two signal words (”Danger” and ”Warning”) are defined to highlight danger and

hazard levels. Out of the 1191 chemicals we have chosen, 528 are classified as dangerous,

458 are labeled as warnings, and 205 do not have any signal words.

(iii) Other key information like Hazard statement(s), Precautionary statement(s) are

hard to determine which are not taken into consideration.

The GHS hazard pictograms allow us to explore toxic fluids chemical properties from

each sub-categories, expressively from health and environmental hazardous perspectives.

The signal words provides the hazardous degree of each chemicals. Based on these infor-

mation, we are able to calculate fluid toxic index for each disclosure.

3.3 Firm-level data.

To address firm level financial performance’s impact on production decision, we download

core financial characteristics of the public traded oil and gas firms in Compustat. As

Fracfocus received information from both public traded firms and private firms, Firstly we

use fuzzy matching to match the Fracfocus ’OperatorName’ with Compustat ’conm’, we
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then manually find out the determined public traded firm lists. Secondly, we set Global

industry classification standard ’ggroup’ as 1010.0 for the selection of the energy industry.

Thirdly, we keep public firms which have continue exploitation activity between the time

period of 2012 to 2019. 1 We find 46 matched energy firms.Then we calculate the financial

indicators used for determinate financial constraints and for further corporate level controls.

Firm level financial performance may related to market leverage, Tobin’s Q, others

observable dimensions like profitability, dividends, cash flow (in millions), sales growth etc.

We use these information to capturing financial constraining firms.

3.4 Loan and debt data

We use Dealscan database to evaluate the overall loan market behaviors. We focous loans

starting date within 2012-2019 and the data cleaning process we follow (Green & Vallee,

2024), we assign shares equally accross banks for those syndicating loans without detailed

transaction amount information. We only focus on debt for general purpose usage rather

than specifically aims. 2 We also use Refinitiv SDC new debt issue database to evaluate

firm level debt issuance situation.

4 Toxic Chemicals

Fracturing fluids are injected into the well to generate conductive fractures and circumvent

damage close to the wellbore in zones containing hydrocarbons. This procedure greatly

enhances the productive surface area of the reservoir compared to its condition before

fracking. A variety of chemical additives are used to ensure the fluid has specific charac-

teristics such as viscosity, friction reduction, compatibility with the formation, and control

over fluid loss.

1The fracfocus established in 2011, but the state level of disclosure start from 2012, to make the time
series estimation more robust, we drop the first disclosure year.

2Debt with specific purpose are like Merge, Acquisition, Leverage buyout, Exit financing, Trade financ-
ing, IPO related financing, Dividend or Distribution to Shareholders
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4.1 Purpose with toxic and chemical usage

The process of hydraulic fracturing utilises two primary types of substances: fracturing

fluids and proppants. The fluids traditionally employed in shale well fracturing treatments

consist of either water-based solutions or mixed slickwater fluids. The latter refers to water-

based fluids that are blended with friction-reducing additives such as potassium chloride.

Determining the appropriate fracturing fluids, additives, and proppants is a subjective

procedure that takes into account elements such as formation assessment, laboratory test

findings, and project expertise. The most fundamental and widely used technique for stim-

ulating wells in unconventional gas extraction is slickwater fracturing. Chemical additives

used in hydraulic fracturing have several purposes and are categorised into subgroups in-

cluding fluid-loss additives, clay stabilisers, gel breakers, bactericides or biocides, and pH

control agents. The objective of acidisation is to augment the productivity or injectablity

of a well.

Proppants, usually consisting of sand or synthetic sand-like minerals like silica sand,

resin-coated silica sand or artificial ceramics, are employed to maintain the openness of

fractures, therefore facilitating the movement and subsequent extraction of crude oil and

natural gas. The efficacy of a proppant is assessed based on its capacity to preserve fracture

conductivity, and the successful choice of a proppant is established by attaining substantial

fracture continuity. In terms of production time, the rate of production decreases more

quickly with higher proppant sizes, since it is alone determined by the permeability of the

formation matrix. In addition to fracture conductivity, additional important considera-

tions for choosing proppants in multistage fracturing are flow convergence in transverse

fractures, proppants transport in low-viscosity fluids, and proppants compression usually

at low concentrations.

To categorize and determine the specific uses of toxic chemicals during the fracturing

process, we consulted the chapters in the Handbook of Hydraulic Fracturing. (Speight,

2016) Initially, we cataloged the types of chemicals used and their intended purposes as

outlined in the handbook, followed by employing fuzzy matching with the disclosed pur-

poses from the frac-focus dataset. We retained the results of this type matching for further

analysis. The keywords used for matching are listed in the appendix. Our goal is to identify
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which purposes involve the use of toxic chemicals more frequently and which purposes have

been reducing their use of toxic chemicals over the past decade.

Figure 4 provides a detailed visualization of the application of toxic chemicals, identi-

fied by the hazard designation ’Danger’, across diverse fracturing operations from the year

2011 onwards. Each cell within the heatmap is color-coded to reflect the count of dis-

tinct toxic chemicals employed, with the color gradient transitioning from blue, denoting a

lower count, to red, indicating a higher count. The analysis of the heat map yields several

pertinent observations: (i) There was a notable peak in the employment of unique toxic

chemicals during the period 2013 to 2015. (ii) The subsequent reduction in the diversity

of toxic chemicals used is likely attributable to the implementation of stricter regulatory

frameworks and enhanced transparency in chemical disclosure. (iii) The data exhibit con-

siderable variability in chemical utilization across different operational purposes; functions

such as Acid Treatment, Bactericides/Biocides, Corrosion Inhibitors, General Additives,

Surfactants, and Scale Inhibitors consistently demonstrate higher chemical diversity. (iv)

A significant reduction in the utilization of toxic chemicals within each categories suggests

an ongoing industry shift towards reducing the use of hazardous substances in these specific

applications.

4.2 Toxic Index

To address the toxic chemicals usage for each well, we proposed toxic index for each well i.

Toxic Indexi,t =
∑
i

(
PercentHFJobi,j,t × 1{j∈toxic}

)
(1)

Where, PercentHFJobi,j,t represents the proportion of ingredient j in the total hy-

draulic fracturing volume, expressed as a percentage by mass. The term 1{j∈toxic} denotes

the indicator function, which is assigned a value of 1 if chemical j is labeled with the

’Danger’ signal word, and 0 otherwise. For those chemicals defined dangerous but not

environmental hazardous such as Crystanile silica/SIO2 are not taken into calculation. 3

3For those chemicals with signal word ’Danger’ we deep down to search their GHS classifications. Mainly
found Sillicons related chemicals are less harmful to both environments and human beings. While other
chemicals such as CA2O3, NIOx, some are water solvable or can be searched with impacts such as fishes.
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To address the right skewness of the chemical index, we follow the approach outlined by

(Fetter, 2022). Firstly, we apply a logarithmic transformation to the index, adding 0.01 to

avoid taking the log of zero. Subsequently, we winsorize the data at the upper 1% level to

mitigate the impact of outliers.

Figure 5 shows the yearly distribution of well level toxic index. We find that in general

decreasing trend in well level toxic chemical use. The lower percentile decreases after 2015,

while the upper percentile decreases in the year 2015 to 2018 but reverts to the previous

period after.

4.3 Toxic Chemical Properties

Hydraulic Fracturing process causes environmental and health concerns over toxic usage

which leads to state governments either force the HF operators to disclose their exploitation

to FracFocus and local state agency or just banned the HF outright. so will being green

bring oil productive surplus or will federal land usge will lead more constraints to the toxic

chemical usage.

Property 1: Federal lands do not significantly reduce pollution levels despite having strict

regulations and monitoring systems in place.

Federal lands, owned and administered by the U.S. federal government, are essential

for the country’s management of natural resources. Oil companies are required to secure

leasing rights from the federal government to conduct exploration and extraction activities

on these lands. These leases are allocated through competitive auctions and are governed

by contracts that impose rigorous environmental and safety standards. As a result, oil

extraction activities on federal lands are subject to an array of federal environmental regu-

lations 4. These regulatory frameworks are designed to safeguard environmental quality and

public health, which can lead to restrictions or delays in the approval and execution of oil

extraction projects. Furthermore, federal agencies such as the Bureau of Land Management

(BLM) and the U.S. Forest Service (USFS) are tasked with overseeing the development of

these resources. Policy shifts, including limitations on drilling and hydraulic fracturing

4Typically regulations including the Clean Air Act and the Clean Water Act, as well as environmental
impact assessments mandated by the National Environmental Policy Act (NEPA)
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which have a significant impact on the pace and scale of oil production. In addition, the

federal government levies rents, royalties, and production sharing fees on oil companies,

which not only constitute a substantial portion of the operational costs but also provide

significant revenue streams for the federal treasury. We explore the relation between federal

land and well chemical usage using following empirical model:

Toxic Indexi,j,s,t = α + β1 × Federali + γt + θj + δs + ϵi,j,s,t (2)

where Toxic indexi,j,t is well i’s toxic chemical usage percnetage owned by firm j in

geoloation s at time t,Federali is an indicator of whether well i exploited in federal land,γt

is year fixed effect, θj is the firm fixed effect, δs is the geo-location grid fixed effect, the

geo-location is the grid by 1× 1 degree latitude and longitude changes.

[Insert Table 5 here]

Table 5 shows that there is no relation between federal land and well chemical use, local

federal governments do not promote well’s green behavior possibly due to stronger censor

restrictions and regulatory requirements.

Property 2: A green well brings no production surplus.

Operators engage in resource exploitation to maximize economic benefits. To examine

whether adopting greener practices leads to production advantages over medium- and long-

term horizons, we estimate the following regression model:

Productioni,j,s,t = α + β1 × Toxic Indexi,j,s,t + γt + θj + δs + ϵi,j,s,t (3)

where Productioni,t is the logarithm of the gross gas (oil) production within t period

average standardized by perforated foot, t ∈ {6 month, 12 months}, Toxic indexi,j,t is well

i’s toxic chemical usage percnetage owned by firm j in geoloation s at time t,γt is year fixed

effect, θj is the firm fixed effect, δs is the geo-location grid fixed effect, the geo-location is

the grid by 1× 1 degree latitude and longitude changes.

Regression results presented in Table 5, columns (2) and (3), indicate that wells utilizing

fewer toxic chemicals—i.e., ”greener” wells—do not exhibit higher production levels in
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either the short or long term. This suggests that reducing toxic chemical usage does not

provide a production surplus.

5 Debt Market and Firm reaction to Paris Agreement

Following the 2015 Paris Agreement, oil and energy companies have faced intensified regu-

latory and financial constraints aimed at reducing carbon emissions. Governments, institu-

tional investors, and financial intermediaries have increasingly incorporated environmental

considerations into lending and investment decisions, exerting mounting pressure on fossil

fuel-dependent industries.

In particular, the loan and debt markets provide a direct lens into these emerging fi-

nancial frictions. Loan agreements and debt issuance activities are critical financing chan-

nels for energy firms, and shifts in credit terms—such as pricing, availability, maturity

structures, and covenants—reflect lenders’ reassessment of long-term risks associated with

carbon-intensive industries.

In this section, we explore how the Paris Agreement has reshaped the loan and debt

financing environment for energy companies. We examine changes in syndicating loan and

corporate debt market to assess the extent to which financing conditions have tightened

relative to firm with high short-term debt ratios for their intensive financing needs. Our

analysis provides early evidence of how climate-related regulatory commitments affecting

firms’ access to capital and potentially altering the production strategies.

5.1 The Corporate Debt Market

Firms heavily dependent on short-term debt are more likely to be affected by financing pres-

sures in the aftermath of the Paris Agreement due to their frequent need to roll over debt.

To identify firms that rely more heavily on short-term debt prior to the Paris Agreement,

we construct a time-invariant firm-level indicator, 1{ST Debtj}, based on firms’ historical

shortterm debt usage patterns. Specifically, for each fiscal year up to 2015 includes, we clas-

sify firms whose ratio of short-term debt to total assets exceeds the cross-sectional median

as being ”above median” for that year. We then count, for each firm, the number of years
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in which it was classified as above median. Firms in the top 50% based on this count are

assigned a value of one for 1{ST Debtj}, indicating persistent high reliance on short-term

debt; all others are assigned a value of zero. This indicator remains fixed across all years in

our analysis, ensuring that it reflects pre-Paris Agreement financing structures rather than

post-event adjustments. We use the following regression to test Paris Agreement’s impact

on high short-term debt ratio firms’ new debt issuance.

NewDebtPropertyi,j,t = α + β1 × Pairs× 1{ST Debtj}+ γj + θt + ϵi,j,t (4)

where NewDebtPropertyi,j,t is firm j’s new debt i’s properties at time t including Log-

arithm of Debt Amount, Debt spread, Paris is an indicator of years after paris agreement,

1{ST Debtj} is a dummy of high short-term ratio firms, δj,t is the firm controls, γj is firm

fixed effect, θt is the time fixed effect.

Regression result are shown in Table 6. A negative coefficient on Paris × ST Debt

in Column(1), indicates that firms with higher short-term debt reliance experienced a

larger reduction in debt issuance volume after the Paris Agreement. In contrast, a positive

coefficient in Column(2), suggests that these firms faced higher borrowing costs in the

post-Paris period. These results provide evidence that firms with frequent refinancing

needs became more financially constrained following the Paris Agreement.

[Insert Table 6 here]

5.2 The Syndicated Loans Market

After the paris agreement, (Green & Vallee, 2024) find that banks are divesting money

from coal industries. Many NGOs have listed list of bank who are willing to exit the fossil

fuel market by the year of 2030. Also from share holders view, stocks holding by more

green investors force the fossil fuel firms taking green trasitions. In this sector, we discuss

what is the real loan market for the shale oil industry after the Paris Agreement.

LoanPropertyi,j,l,t = α + β1 × Paris× 1{ST Debtj}+ λj,l + ϕt + ϵi,j,l,t (5)

where LoanPropertyi,j,l,t is debt i’s properties including Debt Term, Logarithm of Loan
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Amount, Debt spread borrowed by oil firm j with lender l at time t. Paris is an indicator

of whether the debt is issued after paris agreement,1{ST Debtj} is a dummy of high short-

term ratio firms, λj,l is the borrower lender fixed effect, ϕt is the year fixed effect.

Result in Table 7 shows that, relative to other firms, high short-term debt firms signif-

icantly extended the maturity of their loans after the Paris Agreement (Column 1), likely

in response to increased refinancing risks. However, the total new loan amount did not

change materially (Column 2), while the amount of new money raised from bank declined

sharply (Column 3), suggesting that these firms faced tightened credit constraints. The

loan spread did not exhibit significant differences (Column 4), implying that the tightening

was primarily on bank’s new money injection rather than the price of credit.

[Insert Table 7 here]

5.3 Firm level Cost of Debt

We calculate firm level’s pre tax cost of debt by interest and related expense divided by

total debt. We find that after 2015, ST Debt firms facing a sever debt financing friction.

Figure 1 plots the average cost of debt for high- and low-DLC firms over 2012–2020.

Before 2015, cost trajectories were relatively stable and parallel across both groups. How-

ever, following 2015, high-DLC firms experienced a significant rise in debt costs, surpassing

low-DLC firms by 2016. This divergence suggests that short-term debt-dependent firms

were more exposed to financing frictions or shifts in credit conditions. Interestingly, the

gap temporarily narrowed around 2018–2019.

To further validate this, we run the following subgroup regression.

CostofDebt j,t = α + β1 × Prais+ δj + ϵj,t (6)

where CostofDebt j,t is the cost of debt of operator j in year t. Paris is paris agreement

dummy, δj is firm level fixed effect.

Table 9 reports the heterogeneity analysis of firm-level cost of debt in response to the

Paris Agreement. Column (1) includes all firms, the coefficient on the Paris dummy is

positive and statistically significant at the 5% level (0.0092), suggesting that, on average,
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firms experienced an increase in their cost of debt following the Agreement.

In Columns (2) and (3), we split the sample based on firms short term debt leverage.

The effect is concentrated in ST-Debt firms (Column 2), where the coefficient increases

to 0.0118 and remains significant at the 10% level, while the effect becomes statistically

insignificant and economically smaller in the case of non-short-term debt firms (Column 3).

This pattern indicates that firms more reliant on short-term debt faced greater financing

frictions following the Paris Agreement.

[Insert Table 8 here]

5.4 Short-term Debt Firm Pollution Control

We now explore the pollution heterogeneity for the short-term debt firms and other firms

by the following equations

Toxic Indexi,j,s,g,t = α+
2019∑

k=2012

βk×1{ST Debtj}×Y eark+δj,t+θi+γj,s+λg+ϕt+ϵi,j,s,g,t (7)

Toxic Indexi,j,s,g,t = α+β1× 1{ST Debtj}×Prais+ δj,t+ θi+ γj,s+λg +ϕt+ ϵi,j,s,g,t (8)

where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i with operator

j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for whether

firms are more short term debt financers δj,t is firm level controls at year t, θi is well level

controls, γj,s is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed

effect.

Regression result are shown in 8, We find that prior to the Paris Agreement, there was

no systematic difference in toxic chemical usage between firms with high and low short-term

debt ratios. Following the Agreement, high-ST debt firms significantly reduced their toxic

chemical usage, with the effect strengthening over time. This suggests that financially con-

strained firms were more responsive to the regulatory shift induced by the Paris Agreement,

adjusting their pollution behaviors to mitigate financing risks. The estimated coefficient on

the interaction term suggests an economically significant reduction of approximately 0.931

less logarithmic percentage chemical usage (approximately 60% less).
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[Insert Table 9 here]

6 Channel Test

6.1 Financial Cost

Firms that face higher internal financial costs may have stronger incentives to adjust op-

erations, including environmental practices, to optimize resource allocation and minimize

costs, particularly after external regulatory shocks such as the Paris Agreement.

High short-term debt (ST) firms, due to their heightened sensitivity to financing condi-

tions, may respond to environmental regulation not merely through liquidity management

but also by adjusting costly operational aspects such as pollution control measures.

Measures of Financial Costs

• Capital Expenditure Intensity (Capex/Assets): We measure a firm’s invest-

ment intensity by the ratio of capital expenditures (Capex) to total assets (AT).

Higher Capex/AT indicates greater capital intensity, suggesting larger fixed obliga-

tions and potentially higher financial rigidity.

• Administrative Expense Burden (Log(SGA/Sale)): We measure administra-

tive cost exposure by the logarithm of selling, general, and administrative expenses

(SGA) over sales. A higher value reflects heavier overhead cost structures, which may

pressure firms to manage other operating costs, including environmental liabilities.

Results and Interpretation

The regression results presented in Table 10 show differentiated responses across these

financial cost measures.

In Column (1), ST firms with greater capital expenditure intensity (Capex/AT) exhibit

a significant and economically large reduction in toxic chemical usage following the Paris

Agreement. This suggests that capital-intensive ST firms are more aggressive in adjusting

pollution practices.

In contrast, Column (2) shows that ST firms with higher administrative cost burdens

(Log(SGA/Sale)) slightly increase their pollution intensity after the Paris Agreement. One
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possible explanation is that firms already burdened with high fixed administrative costs

may have limited flexibility to further invest in pollution reduction technologies, leading

to worsened environmental outcomes under financial pressure. Overall, the results high-

lighting an important channel through which internal financial frictions shape corporate

environmental behavior.

[Insert Table 10 here]

6.2 Financial Health

To further explore the relationship between financial performance and environmental out-

comes, we examine firm-level financial ratios using three distinct measures: the Altman

Z-score, the Interest Coverage Ratio, and the Loughran McDonald Constraints Ratio (LM

ratio). These metrics capture different aspects of a firm’s financial health, allowing us to

disentangle the effects of balance sheet strength, debt servicing ability, and textual indica-

tors of financial constraints on pollution behavior.

By incorporating these financial indicators, we aim to investigate whether firms with

stronger financial positions behave differently from financially constrained firms in response

to the Paris Agreement. Specifically, we assess whether firms with greater financial flexi-

bility—either through lower bankruptcy risk, stronger debt repayment capacity, or fewer

textual constraints—exhibit distinct environmental behaviors compared to their more con-

strained counterparts.

Altman Z-score

Altman Z-score is a financial metric used to assess a firm’s likelihood of bankruptcy.

It is calculated as a weighted sum of several financial ratios and is particularly useful for

evaluating manufacturing firms. The higher the Z score, the lower risk of bankruptcy. The

formula is given in appendix.

Interest Coverage Ratio

Another related financial metric is the Interest Coverage Ratio, which measures a com-

pany’s ability to meet its interest obligations with definition of EBIT divided by Interest

Expense. A higher interest coverage ratio indicates a stronger ability to service debt,

reducing financial distress risk.

18



Loughran McDonald Constraints Ratio

The Loughran McDonald Constraints Ratio (LM ratio) is proposed by (Bodnaruk,

Loughran, & McDonald, 2015), which using the constraining word frequency in 10-K file

to measuring firm level financial constraints through a textual view. Firstly, we obtained

public firms’ 10-K file from SEC-EDGAR. We then use NLTK python package to sparse the

10-k, pre-processing including dropping punctuation, non english words and stop words.

After the pre-processing process, we use regular expression operations to find the con-

straining words proposed by LM 5. The LM ratio is defined as the words frequency of

constraining words divided by total words counts. The higher the LM ratio, the higher the

firm constraints.

We re-estimate the regression from Section 5 within different financial characteristic

groups. The results, presented in Table 11, reveal several key findings.

First, regarding the Altman Z-score classification, we find that ST firms with a higher

Altman Z-score (Column 1), which indicates stronger balance sheets and lower bankruptcy

risk, experience a statistically significant decrease in toxic chemical usage following the Paris

Agreement (coefficient = -0.66651, significant at the 10% level). In contrast, ST firms with

a lower Altman Z-score (Column 2) do not exhibit significant changes in pollution behavior.

This suggests that financially healthier firms are more responsive to environmental policy

changes.

Second, when splitting by the Interest Coverage (IC) ratio, a similar pattern emerges.

ST Firms with higher IC ratios (Column 5), indicative of stronger debt-servicing capacity,

significantly reduce their toxic chemical usage after the Paris Agreement (coefficient = -

0.85080, significant at the 10% level). Conversely, ST firms with lower IC ratios (Column

6) show no statistically significant response. This again underscores that financially flexible

firms are more proactive in adjusting their environmental behavior in response to regulatory

pressure.

Taken together, these results imply that financial health plays a critical role in shaping

ST firms’ environmental responses. ST Firms with stronger financial positions, character-

ized by lower bankruptcy risk, stronger debt service capacity, and fewer textual financial

5The LM constraining words are available from University of Notre Dame
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constraints, are more capable of and more likely to reduce environmental externalities when

facing global regulatory shifts such as the Paris Agreement. Financial flexibility appears to

facilitate investments in cleaner technologies or operational adjustments needed to comply

with environmental expectations.

[Insert Table 11 here]

6.3 Reputation Risk

In the context of our study, high short-term debt (ST) firms may adjust their pollution

behaviors not solely due to direct compliance costs but also to mitigate potential reputa-

tional losses following the Paris Agreement. Firms with higher exposure to reputational

risks could have stronger incentives to proactively reduce pollution to preserve their public

image and sustain investor confidence.

Measures of Reputation Risk

To capture different dimensions of reputation risk, we employ three complementary

firm-level metrics:

• Reputation Risk Index (RRI): We use the Reputation Risk Index (RRI) obtained

from the WRDS database. This index aggregates firm-level exposure to reputational

concerns across various dimensions, including environmental incidents, governance

controversies, and public perception. A higher RRI indicates greater reputational

risk.

• ESG Score: As a broader measure of firm sustainability practices, we use the Refini-

tiv Industry-Adjusted ESG Score. This score evaluates a firm’s overall performance

across environmental, social, and governance factors, adjusting for industry-specific

characteristics. Higher scores reflect better ESG practices and, presumably, lower

exposure to reputation-based penalties.

• Environmental Pillar Score (E Pillar): To isolate the environmental dimen-

sion, we include the Environmental Pillar Score from Refinitiv. Higher scores denote

stronger environmental performance.
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We re-estimate the baseline regression by intersection reputation terms and the regres-

sion results are presented in Table 12. Column (1) shows that among high-ST firms, those

with higher RRI experience a statistically significant reduction in toxic chemical usage after

the Paris Agreement. This finding suggests that firms more exposed to reputational risks

are more responsive to environmental regulation by reducing pollution intensity, consis-

tent with reputation preservation motives. Yet, Columns (2) and (3) focus on ESG and

Environmental Pillar scores, we don’t find similar result.

Overall, the evidence indicates that reputational concerns indeed play a role in moder-

ating firms’ environmental responses. However, the effect appears more pronounced when

directly using incident-based reputation metrics (RRI) than broader ESG scores.

[Insert Table 12 here]

6.4 Supply Chain Risk

Environmental risk management is not solely an internal operational matter but also in-

creasingly intertwined with firms’ supply chain structures. A firm’s ability to control envi-

ronmental outcomes can be affected by the concentration and diversity of its supplier base.

In the context of high short-term debt (ST) firms, tighter or riskier supply chains may con-

strain the flexibility needed to implement pollution control measures following regulatory

shocks like the Paris Agreement.

Firms facing greater supply chain risks may either preemptively adjust pollution be-

haviors to ensure operational continuity, or, conversely, find themselves unable to respond

effectively due to supply bottlenecks.

Measures of Supply Chain Risk

We construct two complementary measures to capture the nature of firms’ supply chain

exposure:

• Supplier HHI (Herfindahl-Hirschman Index): The Supplier HHI is calculated

annually for each operator (firm) by aggregating the squared market shares of each

supplier, where market share is defined as the proportion of wells serviced by a par-

ticular supplier within the operator’s total wells in year t.
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HHIj,t =

Sj,t∑
s=1

(
Ns,j,t

Nj,t

)2

(9)

where:

– Sj,t is the number of unique suppliers associated with operator j in year t,

– Ns,j,t is the number of wells serviced by supplier s for operator j in year t,

– Nj,t =
∑Sj,t

s=1Ns,j,t is the total number of wells operated by j in year t.

The term
Ns,j,t

Nj,t
represents the market share of supplier s within operator j’s total well

operations in year t. A higher value of HHIj,t indicates greater supplier concentration

(i.e., reliance on fewer suppliers), while a lower value indicates a more diversified

supplier base.

• Supplier Count (Supcount): Supplier Count measures the number of unique sup-

pliers each operator engages with in a given year. A higher supplier count reflects

greater supplier diversity and lower exposure to supply disruptions, providing firms

with greater operational flexibility.

Results and Interpretation

The regression results presented in Table 13 illustrate the differential responses of ST

firms based on their supply chain characteristics. Column (1) shows that ST firms with

higher Supplier HHI—meaning more concentrated supply chains—experience a significantly

larger reduction in toxic chemical usage after the Paris Agreement (coefficient = -1.27903,

significant at the 1% level). This finding suggests that firms relying heavily on a few key

suppliers may proactively reduce pollution risks to avoid disruptions and preserve critical

supply relationships under increasing environmental scrutiny. In Column (2), Supcount

term is positive and significant. This implies that firms with more diversified supplier

bases are less responsive in reducing pollution.

[Insert Table 13 here]
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6.5 Ownership Risk

Beyond internal financial health and supply chain characteristics, changes in the ownership

structure of firms can also influence corporate environmental behavior. Ownership dynam-

ics, particularly among institutional investors, may alter firms’ incentives and capacity to

respond to regulatory shocks such as the Paris Agreement.

In this section, we investigate how changes in ownership shares by different types of

institutional investors affect pollution outcomes among high short-term debt (ST) firms.

Data and Definition of Ownership Change Variables

We obtain institutional ownership data from the WRDS 13F Holdings database, which

records quarterly equity holdings of large institutional investors. Following standard prac-

tice, we aggregate quarterly data to the annual level and compute annual ownership per-

centage changes for each firm-year observation.

We further classify institutional investors into five types based on the TYPECODE

variable:

• Type 1: Bank — commercial and investment banks

• Type 2: Insurance Company — life and property insurance firms

• Type 3: Investment Companies and Their Managers — mutual funds and

fund management companies

• Type 4: Investment Advisors — independent advisory firms managing assets on

behalf of clients

• Type 5: Others — pension funds, university endowments, foundations, and other

institutional investors

For each type, we define two main variables:

• change.typek: the annual change in ownership percentage by investor type k.

• paris.debt.cownk: an interaction term capturing the joint effect of the Paris Agree-

ment, high ST debt exposure, and the change in ownership by type k.
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Results and Interpretation

The estimation results are presented in Table 14.

In the post-Paris Agreement period, for firms with high short-term debt exposure, a

reduction in ownership by bank investors (Type 1) is associated with a significant decline in

toxic chemical usage. Similarly, a decrease in ownership by investment companies and their

managers (Type 3) also leads to a substantial reduction in pollution. In contrast, changes

in ownership by other types of institutional investors (Types 2, 4, and 5) have weaker or

statistically insignificant effects on environmental outcomes. These findings suggest that

the withdrawal of key institutional investors, particularly banks and investment compa-

nies, may have heightened firms’ incentives to reduce pollution, possibly due to increased

financing constraints or reputational pressures. By comparison, ownership changes among

other types of investors appear to exert more limited governance effects.

[Insert Table 14 here]

7 Robustness Test

7.1 Placebo Test with a Random Shock

To further validate the identification strategy and rule out potential pre-existing trends

or spurious correlations, we conduct a series of placebo tests. For each placebo year from

2012 to 2019, we create a pseudo-treatment variable that equals one for firms classified as

having a high short-term debt ratio (ST Debt) starting from that year, and zero otherwise.

We then estimate the same baseline specification:

Toxic Indexi,j,s,g,t = α+β1×1{ST Debtj}×Shock+δj,t+θi+γj,s+λg+ϕt+ ϵi,j,s,g,t (10)

where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i with operator

j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for whether

firms are more short term debt financers, Shock is a dummy variable mean a random shock

year before or after the paris agreement, δj,t is firm level controls at year t, θi is well level

controls, γj,s is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed
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effect.

The logic is straightforward: if our baseline results are driven by a genuine exogenous

shock from the Paris Agreement, placebo policy shocks assigned to other years should not

yield significant treatment effects.

Figure 3 plots the estimated placebo treatment effects with their 95% confidence inter-

vals across years. The figure shows that the estimated placebo effects fluctuate randomly

around zero before 2015, without strong systematic pre-trend. After 2015, the coefficients

shift downward consistently, indicating a genuine policy impact beginning with the Paris

Agreement. The visual evidence supports the parallel trends assumption and reinforces the

credibility of our difference-in-differences estimation. Overall, the placebo tests provide ro-

bust support for our identification strategy.

The absence of systematic pre-trends and the sharp negative shift after 2015 both con-

firm that the Paris Agreement serves as an exogenous shock to firms’ pollution behaviors,

particularly for those with higher short-term debt exposure.

8 Conclusion marks

This paper investigates how shale oil firms, particularly those with high short-term debt

reliance, adjusted their pollution behaviors following the Paris Agreement. Using detailed

well-level toxic chemical usage data and firm-level financial information, we assess the

environmental and financial responses to this major global climate policy.

Our findings reveal several important insights. First, reducing toxic chemical usage

does not yield production advantages for shale oil firms, suggesting that greener produc-

tion practices are not incentivized through operational gains. Second, financial flexibility

plays a critical role in shaping environmental outcomes: highly indebted firms, especially

those facing greater refinancing pressures, exhibit more significant reductions in pollution

intensity after the Paris Agreement, consistent with the notion that financial constraints

amplify environmental responsiveness. Third, through channel analyses, we show that firms

with higher internal financial costs (such as capital intensity) or stronger financial health

(measured by Altman Z-score and interest coverage) are more responsive to environmental

regulations. Moreover, reputation risk exposure, particularly measured by the Reputa-
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tion Risk Index (RRI), strengthens firms’ incentives to engage in greener production, while

broader ESG scores are less predictive. Finally, supply chain concentration (higher supplier

HHI) also motivates firms to reduce pollution under regulatory pressure, while changes in

institutional ownership, particularly declines by banks and investment managers, further

encourage pollution reduction.

Overall, our study highlights the interplay between financial structures and environmen-

tal behaviors in response to global climate agreements. The results imply that financial

constraints, reputational considerations, and supply chain structures critically shape cor-

porate environmental strategies, offering valuable implications for policy makers aiming to

align financial incentives with environmental goals.
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Table 3 A: Chemicals Signal Word Statistics

Table 3 panel A reports the summary statistics of well-level information based on production
type clustered in state level. Table 2 panel B reports the summary statistics of median unique
chemicals usage for each production type clustered in state level since 2010.

Variables OBS Danger Warning No Description

Signal Words 1191 528 458 205

Table 3 B: Hazard Class Pictograms

Table 3 panel B reports the meaning of GHS code. For each chemical with unique CAS Number,
the MSDS reports its GHS information, which provide not only dangerous level but also hazardous
classification.

GHS Code Meanings

GHS01 Explosives
GHS02 Flammables
GHS03 Oxidizers
GHS04 Compressed Gasesl
GHS05 Corrosives
GHS06 Acute Toxicity
GHS07 Irritant
GHS08 Health Hazard
GHS09 Environment

Table 4: Financial Indicators and Calculation Methods

Table 4 listed the financial indicators we use to capturing firm level financial distress and their
detailed calculation methodoloy.

Financial indicators Calculation methods

K PP&E - Total Net

CashFlow (in Millions) Income Before Extraordinary Items (Cash Flow) +
Depreciation and Amortization

Cash Cash + Marketable Securities Adjustment

Dividened Dividends - total

Tobin’s Q market value of equity plus debt divided by book assets.

Debt Long-Term Debt – Total + Debt in Current Liabilities

Total capital Debt plus total stockholders’ equity
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Table 5: Toxic Properties

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,t = α + β1 × Federali + γt + θj + δs + ϵi,t where
Toxic indexi,j,t is well i’s toxic chemical usage percnetage owned by firm j in geoloation s at
time t,Federali is an indicator of whether well i exploited in federal land,γt is year fixed ef-
fect, θj is the firm fixed effect, δs is the geo-location grid fixed effect, the geo-location is the
grid by 1 × 1 degree latitude and longitude changes. For columns (2) and (3) was estimated
by Productioni,j,s,t = α + β1 × Toxic Indexi,j,s,t + γt + θj + δs + ϵi,j,s,t where Productioni,t

is the gross gas (oil) production within t period average standardized by perforated foot,
t ∈ {6 month, 12 months}, Standard errors are clustered at operator level and given in paren-
theses.

(1) (2) (3)
Toxic Index, 1 Log prod 6 log prod 12

Federal Well 0.09540
(0.12170)

Toxic Index, 1 -0.00054 0.00380
(0.01158) (0.01178)

Log True Vertical Depth -0.01482 0.15417*** 0.14237***
(0.03678) (0.04843) (0.04380)

Log Horizontal Length 0.08952** -0.36636*** -0.31549***
(0.04200) (0.04713) (0.04796)

Log Water Volume -0.24489*** 0.12571*** 0.12233***
(0.04525) (0.02585) (0.02574)

Obs. 63761 61115 61123
R2 0.474 0.425 0.462
Year FE Y Y Y
Geo FE Y Y Y
Firm FE Y Y Y
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Table 6: New Debt Issue Property

The table shows the the estimation of the following panel fixed effect regression:
NewDebtPropertyi,j,t = α + β1 × Pairs × 1{ST Debtj} + δj,t + γj + θt + ϵi,j,t where
NewDebtPropertyi,j,t is firm j’s new debt i’s properties at time t including Logarithm of Debt
Amount, Debt spread, Paris is an indicator of years after paris agreement, 1{ST Debtj} is a
dummy of high short-term ratio firms, δj,t is the firm controls, γj is firm fixed effect, θt is the
time fixed effect. Standard errors are clustered at year month level and are given in parentheses.

(1) (2)
lg debt amount spread

Paris×ST Debt -0.33998** 0.81524**
(0.14784) (0.36972)

Log(at) -0.00001** -0.00002**
(0.00000) (0.00001)

Profit -0.97753** -0.20579
(0.45993) (1.97353)

Debt -0.00000 0.00001
(0.00001) (0.00002)

Market Leverage 0.69383 1.55442
(0.42107) (1.55179)

Q -0.13382 0.60708
(0.17976) (0.43890)

Z 0.05424 -0.26070
(0.08769) (0.21647)

Sale/at 0.08302 -1.34858***
(0.14742) (0.48051)

Interest expense -0.00034 0.24852
(0.00236) (0.29925)

Mean Dep.Var. 6.291 2.243
Obs. 360 213
R2 0.768 0.830
Firm FE Y Y
Year FE Y Y
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Table 7: Syndicated Loan Market Property

The table shows the the estimation of the following panel fixed effect regression:
LoanPropertyi,j,l,t = α+β1×Paris×1{ST Debtj}+λj,l+ϕt+δp+ϵi,j,l,t where LoanPropertyi,j,l,t
is debt i’s properties including Debt Term, Logarithm of Loan Amount, Debt spread borrowed by
oil firm j with lender l at time t. Paris is an indicator of whether the debt is issued after paris
agreement,1{ST Debtj} is a dummy of high short-term ratio firms, λj,l is the borrower lender
fixed effect, ϕt is the year fixed effect. Standard errors are clustered at borrower-lender level and
given in parentheses.

(1) (2) (3) (4)
debt term lg debt amount lg new money spread

Paris×ST Debt 0.49833** 0.01524 -1.34878*** -0.17264
(0.24070) (0.03025) (0.29262) (0.12766)

Mean Dep.Var. 3.973 3.430 5.705 1.895
Obs. 2426 2426 355 2100
R2 0.545 0.960 0.813 0.650
Borrower-Lender FE Y Y Y Y
Year FE Y Y Y Y

Figure 1: Average Cost of Debt
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Table 8: Firm Pollution Heterogeneity

We use the following empirical model to explore firm pollution heterogeneity.
Toxic Indexi,j,s,g,t = α+

∑2019
k=2012 βk × 1{ST Debtj}× Y eark + δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t

and Toxic Indexi,j,s,g,t = α+ β1 × 1{ST Debtj} × Prais+ δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t
where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i with operator j at
state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for whether firms are
mojre long term debt financers δj,t is firm level controls at year t, θi is well level controls, γj,s
is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed effect. Standard
errors are clustered at operator level and are given in parentheses.

(1) (2)
Toxic Index, 1 Toxic Index, 1

2012×ST Debt -0.03083
(0.77074)

2013×ST Debt 0.06607
(0.17513)

2015×ST Debt -0.59840*
(0.35009)

2016×ST Debt -1.12673***
(0.39762)

2017×ST Debt -1.23909***
(0.45519)

2018×ST Debt -1.47415***
(0.49670)

2019×ST Debt -1.98622**
(0.82742)

Paris×ST Debt -0.93108***
(0.25000)

Log True Vertical Depth 0.06923 0.05780
(0.06510) (0.06329)

Log Horizontal Length 0.17487** 0.17439**
(0.06558) (0.06589)

Log Water Volume -0.21541*** -0.21697***
(0.05030) (0.05060)

Log(Total Asset) -0.39190 -0.37408
(0.29420) (0.30979)

Q -0.82353*** -0.89646***
(0.28567) (0.30766)

Capex/Total Asset 2.14273* 1.89804
(1.13542) (1.20775)

Profit 1.09497* 0.80358
(0.59001) (0.57461)

Dividend/Total Asset -15.50089 -24.98672
(13.43388) (16.06096)

Tangibility -1.06886 -1.22267
(1.53719) (1.74916)

Log(SGA/Sale) 0.29675** 0.18140
(0.13644) (0.13032)

Delta Sale 0.25266 0.19923
(0.21931) (0.22745)

Mean Dep.Var. -1.630 -1.630
Obs. 24474 24474
R2 0.551 0.545
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y

36



Table 9: Firm cost of debt Heterogeneity

We use the following empirical model to explore firm cost of debt heterogeneity. CostofDebt j,t =
α+ β1 ×Prais+ δj + ϵj,t, where CostofDebt j,t is the cost of debt of operator j in year t. Paris
is paris agreement dummy, δj is firm level fixed effect. Standard errors are clustered at operator
level and are given in parentheses.

(1) (2) (3)
CostofDebt CostofDebt CostofDebt

All ST Debt nonST Debt

paris 0.00923** 0.01183* 0.00479
(0.00439) (0.00585) (0.00528)

lgat -0.00000 -0.00000 -0.00000
(0.00000) (0.00000) (0.00000)

profit -0.01319 -0.02391 -0.00273
(0.01509) (0.02683) (0.01160)

Market Leverage -0.00788 -0.01339 0.00119
(0.01466) (0.02360) (0.01742)

Constant 0.05858*** 0.05568*** 0.06394***
(0.00685) (0.01057) (0.00430)

Mean Dep.Var. 0.056 0.052 0.062
Obs. 332 212 120

R2̂ 0.461 0.443 0.500
Firm FE Y Y Y
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Figure 2: Parallel Trend for Policy Shock
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Figure 3: Placebo test for Policy Shock
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Table 10: Financial Risks

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α + β1 × 1{ST Debtj} × Prais × Financialj,t +
δj,t+θi+γj,s+λg+ϕt+ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage
by well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning
for whether firms are mojre long term debt financers, Financialj,t is firm year level Financial
indicator, δj,t is firm level controls at year t, θi is well level controls, γj,s is operator-supplier fixed
effect λg is state level fixed effect, ϕt is the year fixed effect. Standard errors are clustered at
operator level and are given in parentheses.

(1) (2)
Toxic Index, 1 Toxic Index, 1

b/se b/se

Paris STDebt Capex/at -5.53611***
(1.82240)

Paris STDebt Log(SGA/Sale) 0.07092***
(0.02177)

Log True Vertical Depth 0.06163 0.05199
(0.06125) (0.06278)

Log Horizontal Length 0.16416** 0.17780**
(0.06572) (0.06697)

Log Water Volume -0.21737*** -0.21526***
(0.04967) (0.05009)

Log(Total Asset) -0.24741 -0.27253
(0.33196) (0.29820)

Q -0.82776** -0.89684***
(0.32338) (0.32613)

Capex/Total Asset 2.77836* 2.29772*
(1.45061) (1.32300)

Profit 1.07042* 0.75489
(0.59415) (0.55339)

Dividend/Total Asset -21.78384 -24.75136
(17.07256) (16.19483)

Tangibility -1.37387 -1.35604
(1.78117) (1.78274)

Log(SGA/Sale) 0.16846 0.19397
(0.12776) (0.13247)

Delta Sale 0.20773 0.19495
(0.21885) (0.22357)

Mean Dep.Var. -1.630 -1.630
Obs. 24474 24474

R2̂ 0.543 0.544
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y
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Table 11: Financial Performance and Financial Constraints

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α+ β1 × 1{ST Debtj} × Prais+ δj,t + θi + γj,s +
λg + ϕt + ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by well i
with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning for
whether firms are mojre long term debt financers δj,t is firm level controls at year t, θi is well
level controls, γj,s is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed
effect. Standard errors are clustered at operator level and are given in parentheses.

(1) (2) (3) (4) (5) (6)
Toxic Index, 1 Toxic Index, 1 Toxic Index, 1 Toxic Index, 1 Toxic Index, 1 Toxic Index, 1
High Altman Z Low Altman Z High LM ratio Low LM ratio High IC ratio Low IC ratio

Paris×ST Debt -0.66561** -0.13899 -0.53271*** -0.44164** -0.28632 -0.85008***
(0.29071) (0.32294) (0.17216) (0.20172) (0.20043) (0.29181)

Log True Vertical Depth 0.06335 0.16241*** 0.16804** 0.05954 0.05881 0.19484**
(0.09314) (0.04712) (0.07885) (0.06900) (0.08001) (0.09202)

Log Horizontal Length 0.17327* 0.06423* 0.16705*** 0.08832** 0.16341* 0.10063*
(0.08590) (0.03733) (0.05812) (0.04030) (0.09033) (0.05456)

Log Water Volume -0.19010** -0.21563*** -0.19496** -0.17413*** -0.18386** -0.21142***
(0.06864) (0.03824) (0.07092) (0.03553) (0.07499) (0.04086)

Log(Total Asset) -0.21805 0.02761 0.55003 -0.39328 0.15412 -0.03264
(0.68820) (0.19044) (0.69676) (0.23986) (0.26847) (0.22245)

Q -0.79166* -0.74154*** 0.03956 -0.72058*** -0.21513 -0.84209***
(0.39920) (0.21243) (0.15157) (0.24131) (0.42872) (0.23737)

Capex/Total Asset 3.97131 -0.22568 0.34062 0.38287 1.69411 0.52434
(3.02960) (0.60610) (1.08825) (0.86335) (1.57205) (0.62984)

Profit 2.49020*** -0.81858* -1.75008*** 0.43522 0.36251 -0.08637
(0.87669) (0.41399) (0.52922) (0.49324) (1.35338) (0.50977)

Dividend/Total Asset -11.08183 8.28682 -20.91443 2.80470 -13.63518 22.90786
(14.29413) (16.48904) (20.16430) (9.82799) (14.10636) (15.26541)

Tangibility -1.74766 1.37876 -1.62319 0.77507 0.63862 1.39143*
(1.84712) (1.05871) (1.89262) (0.79203) (2.30585) (0.74744)

Log(SGA/Sale) 0.30128** -0.15976 0.05848 -0.08470 0.04564 0.02651
(0.13505) (0.11165) (0.20093) (0.08620) (0.12279) (0.10015)

Delta Sale 0.76264* -0.17402 -0.54073*** -0.05491 0.26940 -0.15875
(0.41905) (0.10347) (0.13473) (0.18864) (0.31432) (0.17107)

Mean Dep.Var. -1.650 -1.586 -1.519 -1.678 -1.501 -1.807
Obs. 16774 7695 7409 17061 14140 10325
R2 0.535 0.683 0.398 0.641 0.501 0.691
Year FE Y Y Y Y Y Y
Operator-supplier FE Y Y Y Y Y Y
Geo FE Y Y Y Y Y Y
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Table 12: Reputation Risks

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α + β1 × 1{ST Debtj} × Prais × Repj,t + δj,t +
θi + γj,s +λg +ϕt + ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical usage by
well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable meaning
for whether firms are mojre long term debt financers, Repj,t is firm year level reputation risk, δj,t
is firm level controls at year t, θi is well level controls, γj,s is operator-supplier fixed effect λg is
state level fixed effect, ϕt is the year fixed effect. Standard errors are clustered at operator level
and are given in parentheses.

(1) (2) (3)
Toxic Index, 1 Toxic Index, 1 Toxic Index, 1

Paris STDebt RRI -0.01745*
(0.00957)

RRI -0.00438
(0.00894)

Paris STDebt ESG -0.06701
(0.06594)

ESG Score 0.10023
(0.09012)

Paris STDebt E -0.12251
(0.09762)

E Score 0.07939
(0.10243)

Log True Vertical Depth 0.05436 0.05368 0.04884
(0.06390) (0.06194) (0.05947)

Log Horizontal Length 0.18900** 0.16121** 0.16408**
(0.07604) (0.07345) (0.07438)

Log Water Volume -0.22457*** -0.22223*** -0.22152***
(0.05698) (0.05599) (0.05575)

Log(Total Asset) -0.18645 0.23371 0.16382
(0.34221) (0.37627) (0.37472)

Q -0.83126** -0.56744 -0.65001*
(0.39162) (0.34625) (0.37097)

Capex/Total Asset 3.02309** 3.18586* 3.38977*
(1.43655) (1.63289) (1.73132)

Profit 1.10990* 1.25146 1.29919
(0.61051) (0.77388) (0.77329)

Dividend/Total Asset -25.17786 -21.64952 -18.73476
(15.25199) (15.38392) (14.18243)

Tangibility -1.77348 -1.41174 -1.42883
(1.86492) (1.90918) (1.93785)

Log(SGA/Sale) 0.19724 0.28329*** 0.30854***
(0.13029) (0.09522) (0.09239)

Delta Sale 0.11755 0.32544 0.36805
(0.23433) (0.27477) (0.24869)

Mean Dep.Var. -1.661 -1.655 -1.655
Obs. 22384 20852 20852

R2̂ 0.549 0.514 0.514
Year FE Y Y Y
Operator-supplier FE Y Y Y
Geo FE Y Y Y
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Table 13: Supply Chain Risks

The table shows the the estimation of the following panel fixed effect regression within each
subclassification groups: Toxic Indexi,j,s,g,t = α+β1× 1{ST Debtj}×Prais× supplyChainj,t+
δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical
usage by well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable
meaning for whether firms are mojre long term debt financers, supplyChainj,t is firm year level
reputation risk, δj,t is firm level controls at year t, θi is well level controls, γj,s is operator-supplier
fixed effect λg is state level fixed effect, ϕt is the year fixed effect. Standard errors are clustered
at operator level and are given in parentheses.

(1) (2)
Toxic Index, 1 Toxic Index, 1

Paris STDebt HHI -1.27903***
(0.13714)

HHI -0.03824
(0.32460)

Paris STDebt Supcount -0.01281
(0.01640)

Supcount 0.05642**
(0.02224)

Log True Vertical Depth 0.07847 0.04555
(0.06704) (0.05876)

Log Horizontal Length 0.15652** 0.16471**
(0.06271) (0.06585)

Log Water Volume -0.21602*** -0.21744***
(0.05243) (0.04925)

Log(Total Asset) -0.20818 -0.06909
(0.28637) (0.30803)

Q -0.59150** -0.76736**
(0.22432) (0.33917)

Capex/Total Asset 1.44920 2.52643
(1.00409) (1.53507)

Profit 0.92915 0.81930
(0.58897) (0.54637)

Dividend/Total Asset -27.06045** -27.02501
(13.19541) (19.32902)

Tangibility -0.89880 -1.25215
(1.59082) (1.78600)

Log(SGA/Sale) 0.14510 0.14035
(0.12519) (0.12071)

Delta Sale 0.13228 0.06335
(0.22857) (0.21448)

Mean Dep.Var. -1.630 -1.630
Obs. 24474 24474
R2 0.550 0.539
Year FE Y Y
Operator-supplier FE Y Y
Geo FE Y Y

43



Table 14: Ownership Change

The table shows the the estimation of the following panel fixed effect regression within each sub-
classification groups: Toxic Indexi,j,s,g,t = α+β1×1{ST Debtj}×Prais×∆ownershipj,o,t,t−1+
δj,t + θi + γj,s + λg + ϕt + ϵi,j,s,g,t where Toxic Indexi,j,s,g,t is the percentage of toxic chemical
usage by well i with operator j at state s exploited in year t. 1{ST Debtj} is a dummy variable
meaning for whether firms are mojre long term debt financers, ∆ownershipj,o,t,t−1 is firm year
level ownership percentage change based on type o, δj,t is firm level controls at year t, θi is well
level controls, γj,s is operator-supplier fixed effect λg is state level fixed effect, ϕt is the year fixed
effect. Standard errors are clustered at operator level and are given in parentheses.

(1) (2) (3) (4) (5)
Toxic Index, 1 Toxic Index, 1 Toxic Index, 1 Toxic Index, 1 Toxic Index, 1

paris debt cown1 -27.69002***
(10.10514)

change type1 9.73835**
(4.41970)

paris debt cown2 -16.14981
(26.61532)

change type2 -3.45049
(8.91893)

paris debt cown3 -79.42280**
(34.82777)

change type3 11.09880
(11.41962)

paris debt cown4 0.97010
(3.78155)

change type4 3.75470**
(1.50393)

paris debt cown5 4.12939*
(2.17880)

change type5 0.43566
(0.76799)

Mean Dep.Var. -1.661 -1.661 -1.661 -1.661 -1.661
Obs. 20938 20938 20938 20938 20938
R2 0.523 0.515 0.519 0.520 0.516
Well Control Y Y Y Y Y
Operator Financial Control Y Y Y Y Y
Year FE Y Y Y Y Y
Operator-supplier FE Y Y Y Y Y
Geo FE Y Y Y Y Y
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Figure 4: Toxic chemicals usage type per year classified by purpose
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Figure 5: Toxic Index Distribution
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Figure 6: Toxic index yearly distribution within public and private firm
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Appendix

Figure A1: Chemical Purpose Explaination
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Figure A2: Purpose Matching Word
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Appendix A.3: Legislation

1. 1969 National Environmental Policy act. (NEPA) 2. Safe Drinking Water Act (SDWA).

- may have constraints of the underground fluid exploitation. 3. Clean Air Act 4. Clean

water act 5. Toxic Substances Control Act The regulation of the discharge of toxic or

hazardous substances into specific environments requires companies to fulfill their reporting

obligations when the discharge of pollutants reaches a certain standard so that the public

can be informed, and both government agencies and the public can monitor shale gas

development. State level legislation: Each state in the U.S. has set strict boundaries on

water withdrawal for shale gas development to prevent water waste and pollution. For

example, St. Louisiana limits the scope of water withdrawal, New York requires that water

withdrawal must be evaluated and licensed by the local regulatory agency, and Michigan

has established a water withdrawal evaluation system to ensure that production and life

are not affected by the use of water for shale gas development.

Appendix A4: Bartik IV

So far in this paper, we have not find a clean setting to get a casual relationship between

financial constraints and firm pollutions. We use lagged one year financial to regress with

well level pollution index and find that firm leverage are positively correlated with toxic

usage. An Bartik IV that correlated with firm leverage but don’t impact firm financial

decisions would help. What we try is that us oil reserve amount yearly volatility, oecd

production amount volatility and brent oil price yearly volatiliy are possible measures, we

weighted these measures by the average first two year well shares (2012, 2013), find that

these are weak ivs which may bring estimation bias.

Appendix A5: Green Transition - intensive and extensive

We further examined the R&D investment behavior of shale oil firms and found that only a

small subset actively invests in research and development. Over the observed time period,

R&D data is available for only seven firms. Among these firms, our analysis reveals that

higher R&D expenditures—lagged by two years—are associated with reduced chemical
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usage in operations. This suggests that investment in innovation may contribute to more

environmentally friendly extraction practices.

Appendix A6: Production Halt and Hedging

A very interesting statistical result is that after 2015, a certain amount of firms exits the

shale industry or decrease their new well exploitations. From state level statistic, several

states halted new exploitation, other special cases like west virginia, only provide data after

2019.

possible cause of green transition

Technological process policy tightness socio-economic environment stake holders’ pressure

Appendix Financial ratios

The Altman Z-score is a financial metric used to assess a firm’s likelihood of bankruptcy.

It is calculated as a weighted sum of several financial ratios and is particularly useful for

evaluating manufacturing firms. The formula is given by:

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 1.0X5 (11)

where:

• X1 =
Working Capital
Total Assets

(Liquidity)

• X2 =
Retained Earnings

Total Assets
(Profitability)

• X3 =
EBIT

Total Assets
(Earnings Power)

• X4 =
Market Value of Equity

Total Liabilities
(Leverage)

• X5 =
Sales

Total Assets
(Efficiency)

The interpretation of the Z-score is as follows:

• Z > 2.99: The firm is in a safe zone (low risk of bankruptcy).
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• 1.81 < Z < 2.99: The firm is in a gray zone (moderate risk).

• Z < 1.81: The firm is in a distress zone (high risk of bankruptcy).

• A vague DID model may cut off reverse causality

• blueprint out the chemical index based on geolocation, see the effect

• How to build a exit model for the firms that exits the shale oil industry after paris

agreement, will there be some new joining in?

• The syndicating loan data should be at least at bank level

• The new debt issuance data may changes the solution, need a more detailed informa-

tion.

• Add descriptive statistics into the model

• A systematic evaluation of chemicals in hydraulic fracturing fluids and wastewater

for reproductive and developmental toxicity. see the paper

• outcomes of the halliburton loophole: chemicals regulated by the safe drinking water

act in the us fracking xxx
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